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We can use formal methods to verify that systems compose correctly 
without the possibility of incorrect behavior. 

This means exhaustively checking that System A’s postconditions agree 
with System B’s preconditions. If so, it is safe to compose.

Normal Setting: Every computational path must be accounted for and 
checked. Verification cost (time) is multiplicative across systems.
•

Cost = |S1|∗|S2 |∗ … ∗|Sn|

Challenge: Formally Verifying System Composition

Outputs: Model Inputs: Model
(properly trained)

Postcondition Precondition
System A:

Train ML Model

System B:

Classify Points
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Zero-knowledge proofs can be used to provide type checking 
guarantees of input/output properties without exposing secrets.
Verification can be done modularly so that the cost is additive.

Cost = |S1|+|S2|+ …+|Sn|

Bad proofs and inputs can still exist, but now are cryptographically 
(exponentially) hard to find and exploit.

Solution: Assuring Safe Composition via zkSNARKs

ZKP 
Verifier

Outputs: Trained model Inputs: Trained model
Postcondition Precondition

zkSNARK proving model is valid

System A:

Train ML Model

System B:

Classify Points
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Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

We can generate proofs (or an audit log) of desired properties (e.g. functional 
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually 
trained on actual data and are within a certain error threshold can be used by a 
classifier.

The audit log and its proof would be huge. Instead, we can use a super small 
zkSNARK to prove this dependent type and pass it along instead. We only need to 
handle the case where the check fails.

classifyPoint : (y : Input, model : MLModel) -> Class
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Preconditions and Postconditions with Types
Type MLModel =
     (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

classifyPoint : (y : Input, model : MLModel, verif : ZKPVerifier) -> IO Class

zkp : ZKP

We can generate proofs (or an audit log) of desired properties (e.g. functional 
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually 
trained on actual data and are within a certain error threshold can be used by a 
classifier.

The audit log and its proof would be huge. Instead, we can use a super small 
zkSNARK to prove this dependent type and pass it along instead. We only need to 
handle the case where the check fails.
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Dependent Type Replacement by ZKPs
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Benefit & Capability
Using zero-knowledge proofs we can combine systems while 
preventing certain incorrect behaviors relating to mismatched outputs 
and input constraints.

Portable proofs artificially  
extends our trusted 
computing base beyond 
just our own system

ZKPs give fine-grained 
control over which bits of 
information to keep 
secret and which to prove

ZKPs enforce system 
compatibility without the 
expense of manually 
proving correctness
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Project Roadmap

1. Prototype and test program interoperability
– Manually implement skeleton code in place of zero-knowledge proofs 

to interact with example program

2. Implement constraint related ZKP gadgets 
– Constraints capture type information that is immediately useful to the 

test program

3. Develop and set up prototype demonstrations
– Replace skeleton code with handcrafted ZKP gadgets
– Develop prototype compiler to read type annotations from file and 

generate constraints
4. Benchmark and Evaluate
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Backup
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Example. You want to prove that you have beaten Where’s Waldo?
• Traditional Proof: Point to Waldo to demonstrate you know where he is

• Not zero-knowledge!
This kind of proof leaks all information about his location, much more than 
simply that you have knowledge of the location

Zero-Knowledge Proof for Where’s Waldo?
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Zero-knowledge proof for “Where’s Waldo?”
1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Zero-Knowledge Proof for Where’s Waldo?

Slide under paper

This precisely obfuscates 
Waldo’s location while 
demonstrating knowledge 
of his whereabouts!

To adversaries, the book underneath could 
hypothetically be in any random orientation
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Completeness vs. Soundness

Typical proof systems have 100% completeness and 100% soundness

Completeness: ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

Soundness: ℙ[false statement AND verifier rejects] = 1
“False statements aren’t provable”
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Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and 
soundness. For non-interactive zero-knowledge proofs we care about:

(Completeness) ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

(Soundness) ℙ[false statement AND verifier rejects] = 1 - ε
“Low chance that a proof of a false statement is 
encountered”

We sacrifice minimal amount of soundness (have to break crypto to 
produce counter-example) in order to get valuable proof properties
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Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true 
without revealing WHY it is true, even if the prover is untrusted and 
malicious.
zkSNARKs are special ZKPs that are tiny and non-interactive

O(1)
size

O(n*log(n)^k) 
size

O(n)
size

Inputs:
Logs

Schematics
Program Traces

Signals
Encryption Keys

Attestations
etc.

Outputs:
Results

&
ZK Proof of 

Computational 
Integrity

Homomorphically Encrypted* *with tweaks
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1

a

t0

b

t1

zkSNARK Construction for Program Verification [BCGTV13]

Computation

Arithmetic 
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}

π

S • A  *  S • B  =  S • C
1

a

t0

b

t1

0

1

0

0

0

0

1

0

0

0

1

a

t0

b

t1

0

1

0

0

0

Zero Knowledge Added

Succinctness Added

Interactivity Removed

zkSNARK for
Program Integrity 

Proof Representation
Of Program Execution

Rank-1 Constraint System (R1CS):

libsnark
backend

Prover
Binary

Verifier
Binary

libsnark
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Theory Behind ZKPs
(Backup)
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PCPs & Hardness of Approximation

Intuition
Efficient approximation scheme for a problem 
implies that it an easy to create a good enough 
looking “fake” solution (witness)

So,
Hard to approximate

⟺
Hard to create a convincing fake witness that 

appears optimal
⟺

Good witnesses imply that best solutions exist Easy to find Hard to find

← Gap →
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NIZK Overview
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1. Publish homomorphically encrypted building blocks for a program

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an 
evaluation of the PCP circuit) and adding random blinds where appropriate

3. Verifier checks content by simply decrypting

Circuit Evaluation

 

 
 

 


